AD-784 019

A NOTE ON EXCHANGES IN MATROID BASES
Harold Gabow, et al
Texas University

Prepared for:

Naval Personnel Research and Development Laboratory Office of Naval Research

July 1974

DISTRIBUTED BY:

5285 Port Royal Road, Springfield Va. 22151

Security Classification

AD 784019

DOCUMENT CONTROL DATA - R & D Seconds - bassilication of title, body of abstract and indexing annotation must be entered when the overall report is classified.							
Center for Cybernetic Studies The University of Texas		Unclassified					
A Note on Exchanges in Matroid Bases							
4. (c) Secretivity). Next is a Type of report and, inclusive dates).							
Harold Gabow Fred Glover Darwin Klinoman							
Darwin Klingman July 1974	74. TOTAL NO OF PAGE	2					
N00014-67-A-0126-0008: 0009 N10047-021	Center for Cybernetic Studies Research Report CS 184						
d	4b OTHER HI PORT NOT this report)	(5) (Any other numbers that may be assigned					
This document has been approved for publi	c release and sa	ale; its distribution					
TO SUPPLEMENTARY NOTES	Office of Naval Research (Code 434) Washington, D.C.						
II AUSTRACI			-				

In a matroid with bases B and B', a B-exchange is a pair of elements c, e', where B - e + e' is a base. A serial exchange of B into B' is a sequence of pairs e_i , e_i ', for $i = 1, \ldots, n$, such that e_i , e_i ', is a B_{i-1} -exchange, where $B_0 = B$, $B_i = B_{i-1}$ - e_i + e_i ', and $B_n = B$ '. This paper shows there is a one-to-one correspondence between elements of B and B' such that corresponding elements e, e' give B-exchanges; furthermore, the pairs e, e' can be sequenced to give a serial exchange of B into B'. A symmetric exchange is a pair of elements e, e' such that e, e' is a B-exchange and e', e is a B'-exchange. Any element of B can be symmetrically exchanged with at least one element of B'. But in contrast to B-exchanges, it is not always possible to make a correspondence between B and B' so corresponding elements give symmetric exchanges.

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S. Department of Commerce
Springfield VA 22151

Unclassified

A PET BOH.	<u> </u>			LINK		. INF	
		OLI	^'	HOLL	W 1	14411	_^
				ł			
Mutroids							
Spanning Trees							
elecommunications	-						!
						İ	
				}			
					ļ		
		1			l		
	ļ					İ	
					i		
•					İ		
		-					
					1	İ	
					1		
				1			
			}				
		İ				İ	
	1	-			- 1		

A NOTE ON EXCHANGES IN MATROID BASES

hy

Harold Gabow *
Fred Glover *
Darwin Klingman

July 1974

* Professor, University of Colorado

This research was partly supported by Project No. NR 047-021, ONR Contracts N00014-67-A-0126-0008 and N00014-67-A-0126-0009 with the Center for Cybernetic Studies, The University of Texas and Contract N00123-74-C-2272 with the Naval Personnel Research & Development Laboratory, San Diego, California. Reproduction in whole or in part is permitted for any purpose of the United States Government.

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director
Business-Economics Building, 512
The University of Texas
Austin, Texas 78712

ABSTRACT

In a matroid with bases B and B', a <u>B-exchange</u> is a pair of elements c, e', where B - e + e' is a base. A <u>serial exchange</u> of B into B' is a sequence of pairs e_i, e_i', for i = 1, ..., n, such that e_i, e_i' is a B_{i-1}-exchange, where B₀ = B, B_i = B_{i-1}-e_i + e_i', and B_n = B'. This paper shows there is a one-to-one correspondence between elements of B and B' such that corresponding elements e, e' give B-exchanges; furthermore, the pairs e, e' can be sequenced to give a serial exchange of B into B'. A <u>symmetric exchange</u> is a pair of elements e, e' such that e, e' is a B-exchange and e', e is a B'-exchange. Any element of B can be symmetrically exchanged with at least one element of B'. But in contrast to B-exchanges, it is not always possible to make a correspondence between B and B' so corresponding elements give symmetric exchanges.

Many network and linear programming problems are solved by repeatedly exchanging elements of a base. The pivot step in linear programming is a general example. The existence of such exchanges can be taken as a defining property of a matroid [2]. This note presents results concerning several types of matroid base exchanges.

First we define three types of exchanges. Let M be a matroid, with bases B and B'. For example, Figure shows the graphic matroid on four nodes. One base consists of the solid arcs 1, 2, 3; another base consists of the dotted arcs 4, 5, 6.

An ordered pair of elements e, e' is a <u>B-exchange</u> if $B - \{e\} + \{e'\}$ is a base. Table 1 shows the possible B-exchanges for each element in $B = \{1, 2, 3\}$.

A serial exchange of B into B' is a sequence of ordered pairs, e_1 , e_1' ; e_2 , e_2' , ..., e_n , e_n' , such that for all i in $1 \le i \le n$, a base is formed by the set

$$B_{i} = B - \{e_{1}, \ldots, e_{i}\} + \{e'_{1}, \ldots, e'_{i}\}$$

Furthermore, $B_n = B'$. The definition implies each pair e_i , e_i' is a B_{i-1} exchange. Hence the sequence of exchanges can be executed serially. Figure 2 shows a serial exchange of the base $\{1, 2, 3\}$ into $\{4, 5, 6\}$.

A symmetric exchange is an ordered pair of elements e, e' such that the sets $B - \{e'\}+\{e'\}$ and $B' - \{e'\}+\{e\}$ are bases. Equivalently, the pair e, e' is a B-exchange and e', e is a B' exchange. Table 2 shows the possible symmetric exchanges for each element in $B = \{1, 2, 3\}$

To characterize these exchanges, we introduce notation for some well-known matroid concepts [2]. For a base B and an element $f \not\in B$, $\underline{B(f)}$ denotes the unique circuit in the set B + f. In Figure 1, for base B = $\{1, 2, 3\}$, $B(5) = \{2, 3, 5\}$.

For a set of elements D, $\underline{sp(D)}$ denotes the span of D. This set is defined as the smallest superset of D such that for any element f, if sp(D) + f contains a circuit containing f, then $f \in sp(D)$. In Figure 1, $sp(\{4, 6\}) = \{2, 4, 6\}$.

Lemma 1: For elements e € B, e' & B, these conditions are equivalent:

- (i) e, e' is a B-exchange
- (ii) $e \in B(e')$.
- (111) e' f sp(B-e).

Proof: An immediate consequence of the definitions.

Corollary 1: For elements e ϵ B - B', e' ϵ B' - B, these conditions are equivalent:

- (i) e, e' is a symmetric exchange.
- (ii) $e' \in B'(e) sp(B e)$

It is apparent from the lemma that any element $e \in B$ gives a B-exchange with at least one element of B^{\dagger} . We show the same is true for symmetric exchanges.

Theorem 1: For any element $e \in B$, there is an element $e' \in B$ such that e, e' is a symmetric exchange.

<u>Proof</u>: Consider any element $e \in B$. If $e \in B'$, then clearly e, e' is a symmetric exchange. So assume $e \notin B'$.

Since B is a base, element $e \notin sp(B-e)$. Thus the circuit B' (e) is not contained in sp(B-e) + e, that is,

$$B'(e) = e \not \in sp(B - e).$$

Now corollary 1 shows there is a symmetric exchange for e, completing the proof.

In Figure 1, we can pair the elements of $B = \{1, 2, 3\}$ and $\{4, 5, 6\}$ so each pair gives a B-exchange: 1, 6; 2, 5; 3, 4. Figure 2 shows these pairs, in the given sequence, are a serial exchange of $\{1, 2, 3\}$ into $\{4, 5, 6\}$. Now we show such a pairing can be made in general.

Theorem 2: There is a one-to-one correspondence between elements of B and B', such that corresponding elements e, e' give a B-exchange. Furthermore, the pairs e, e' can be sequenced to give a serial exchange of B into B'.

Proof: Denote the bases by

$$B = \{e_1, e_2, \ldots, e_n\}, B' = \{e_1', e_2', \ldots, e_n'\}.$$

We assert indices can be chosen in B so for all i in $1 \le i \le n$, the pair e_i , e_i' is a B-exchange; furthermore, a base is formed by the set

$$B_{i}' = \{e_{1}, e_{2}, \ldots, e_{i}, e_{i+1}', e_{i+2}', \ldots, e_{n}'\}.$$

Note the assertion implies the theorem. For the pairs e_i e_i' give a correspondence of B-exchanges, and the sequence e_n e_n' ; e_{n-1} ; ...; e_1 , e_1' is a serial exchange of B into B'. The assertion is proved by induction on i. The initial step, i = 0, is obvious, since $B_0' = B$ is a base. For the inductive step, suppose B_1' is a base. We prove the assertion for i + 1, as follows. Element e_{i+1}' of base B_1' gives a symmetric exchange with some element of base B. This element cannot be e_j , for j in $1 \le j \le i$, since $e_j \in B_1'$. With proper choice of indices, we can assume e_{i+1} , e_{i+1}' is a symmetric exchange. Thus e_{i+1} , e_{i+1}' is a base. This completes the induction.

The proof of Theorem 2 gives a constructive procedure for finding the one-to-one correspondence of B-exchanges. The theorem itself, specialized to graphic matroids, is useful in finding minimum weight spanning trees with specified degree at one node [1].

It is natural to try to generalize Theorem 2 to symmetric exchanges.

However Table 2 shows it is not always possible to pair the elements of two bases so each pair is a symmetric exchange.

Figure 1. Bases $\{1, 2, 3\}$ and $\{4, 5, 6\}$ in a graphic matroid.

Table 1. B-exchanges for e, $B = \{1, 2, 3\}$.

- <u>e</u> <u>e'</u>
- 1 4, 6
- 2 5, 6
- 3 4,5,6

Table 2. Symmetric exchanges for e.

- <u>e</u> <u>e'</u>
- 1 6
- 2 6
- 3 4, 5, 6

Figure 2. Serial exchange of {1, 2, 3} into {4, 5, 6}.

REFERENCES

- [1] Glover, F. and Klingman, D., 1974. "Finding minimum spanning trees with a fixed number of lines at a node," submitted to Operations Research.
- [2] Whitney, H., 1934. "On the abstract properties of linear dependence," American Journal of Mathematics, Vol. 57, pp. 509-533, 1935.

6